Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We present the in-lab and on-sky performance for the upgraded 90 GHz focal plane of the Cosmology Large Angular Scale Surveyor, which had four of its seven detector wafers updated during the austral winter of 2022. The update aimed to improve the transition-edge-sensor (TES) stability and bias range and to realize the high optical efficiency of the sensor design. Modifications included revised circuit terminations, electrical contact between the TES superconductor and the normal metal providing the bulk of the bolometer heat capacity, and additional filtering on the TES bias lines. The upgrade was successful: 94% of detectors are stable down to 15% of the normal resistance, providing a wide overlapping range of bias voltages for all TESs on a wafer. The median telescope efficiency improved from to (68% quantiles). For the four upgraded wafers alone, median telescope efficiency increased to . Given our efficiency estimate for the receiver optics, this telescope efficiency implies a detector efficiency exceeding 0.90. The overall noise-equivalent temperature of the 90 GHz focal plane improved from to .more » « lessFree, publicly-accessible full text available June 1, 2026
-
As robots are increasingly used in remote, safety-critical, and hazardous applications, the reliability of robots is becoming more important than ever before. Robotic arm joint motor-drive systems are vulnerable to hardware failures due to harsh operating environment in many scenarios, which may yield various joint failures and result in significant downtime costs. Targeting the most common robotic joint brushless DC (BLDC) motor-drive systems, this paper proposes a robust online diagnostic method for semiconductor faults for BLDC motor drives. The proposed fault diagnostic technique is based on the stator current signature analysis. Specifically, this paper investigates the performance of the BLDC joint motors under open-circuit faults of the inverter switches using finite element co-simulation tools. Furthermore, the proposed methodology is not only capable of detecting any open-circuit faults but also identifying faulty switches based on a knowledge table by considering various fault conditions. The robustness of the proposed technique was verified through extensive simulations under different speed and load conditions. Moreover, simulations have been carried out on a Kinova Gen-3 robot arm to verify the theoretical findings, highlighting the impacts of locked joints on the robot’s end-effector locations. Finally, experimental results are presented to corroborate the performance of the proposed fault diagnostic strategy.more » « less
-
Samy, Abdallah M (Ed.)Small terrestrial mammals are major hosts of infectious agents responsible for zoonotic diseases. Astroviruses (AstVs)–the cause of non-bacterial gastroenteritis mainly affecting young children–have been detected in a wide array of mammalian and avian host species. However, understanding the factors that influence AstV infection within and across hosts is limited. Here, we investigated the impact of land use changes on AstVs in terrestrial small mammals in rural northeastern Madagascar. We sampled 515 small mammals, representing seven endemic and four introduced species. Twenty-two positive samples were identified, all but one of which were found in the introduced speciesMus musculusandRattus rattus(family Muridae), with a positivity rate of 7.7% (6/78) and 5.6% (15/266), respectively. The non-introduced rodent case was from an endemic shrew-tenrec (family Tenrecidae). We found the highest positivity rate of AstVs infection in brushy regrowth (17.5%, 7/40) as compared to flooded rice fields (4.60%, 8/174), secondary forest (4.1%, 3/74), agroforest (3.6%, 1/28), village (2.61%, 3/115), and semi-intact forest (0%, 0/84). A phylogenetic analysis revealed an association between AstVs and their rodent host species. None of the viruses were phylogenetically related to AstVs previously described in Malagasy bats. This study supports AstV circulation in synanthropic animals in agricultural habitats of Madagascar and highlights the need to assess the spillover risk to human populations in rural areas.more » « less
-
Abstract We present measurements of large-scale cosmic microwave backgroundE-mode polarization from the Cosmology Large Angular Scale Surveyor 90 GHz data. Using 115 det-yr of observations collected through 2024 with a variable-delay polarization modulator, we achieved a polarization sensitivity of , comparable to Planck at similar frequencies (100 and 143 GHz ). The analysis demonstrates effective mitigation of systematic errors and addresses challenges to large-angular-scale power recovery posed by time-domain filtering in maximum-likelihood map-making. A novel implementation of the pixel-space transfer matrix is introduced, which enables efficient filtering simulations and bias correction in the power spectrum using the quadratic cross-spectrum estimator. Overall, we achieved an unbiased time-domain filtering correction to recover the largest angular scale polarization, with the only power deficit, arising from map-making nonlinearity, being characterized as <3%. Through cross-correlation with Planck, we detected the cosmic reionization at 99.4% significance and measured the reionization optical depth , marking the first ground-based attempt at such a measurement. At intermediate angular scales (ℓ > 30), our results, both independently and in cross-correlation with Planck, remain fully consistent with Planck’s measurements.more » « lessFree, publicly-accessible full text available June 11, 2026
-
Zmuidzinas, Jonas; Gao, Jian-Rong (Ed.)Front-end polarization modulation enables improved polarization measurement stability by modulating the targeted signal above the low-frequency $1/f$ drifts associated with atmospheric and instrumental instabilities and diminishes the impact of instrumental polarization. In this work, we present the design and characterization of a new 60-cm diameter Reflective Half-Wave Plate (RHWP) polarization modulator for the 90 GHz band telescope of the Cosmology Large Angular Scale Surveyor (CLASS) project. The RHWP consists of an array of parallel wires (diameter 50~µm, 175~µm pitch) positioned 0.88~mm from an aluminum mirror. In lab tests, it was confirmed that the wire resonance frequency ($$f_\mathrm{res}$$) profile is consistent with the target, $139$~Hz$$<154$$~Hz in the optically active region (diameter smaller than 150~mm), preventing the wire vibration during operation and reducing the RHWP deformation under the wire tension. The mirror tilt relative to the rotating axis was controlled to be $<15''$, corresponding to an increase in beam width due to beam smearing of < $0.6''$, %a beam smearing amplitude of $<0.6''$, negligible compared to the beam's full-width half-maximum of $36'$. The median and 16/84th percentile of the wire--mirror separation residual was $$0.048^{+0.013}_{-0.014}$$~mm in the optically active region, achieving a modulation efficiency $$\epsilon=96.2_{+0.5}^{-0.4}\%$$ with an estimated bandpass of 34~GHz. The angular velocity of the RHWP was maintained to an accuracy of within 0.005\% at the nominal rotation frequency (2.5~Hz). The RHWP has been successfully integrated into the CLASS 90 GHz telescope and started taking data in June 2024, replacing the previous modulator that has been in operation since June 2018.more » « less
An official website of the United States government
